\ '
0OCKS

User Manual for Docks

Team: TripleParity
Client: Compiax

Team Members
Francois Mentz
Connor Armand du Plooy
Raymond De Vos
Evert Geldenhuys
Anna-Marié Helberg
Paul Wood

Contents

System Overview

System Configuration

Installation

3.1 Configuration e
3.1.1 Docks Web Interface oo
3.1.2 Docks API e

Getting Started

Using the System

5.1 Tasks . . o L e
5.1.1 Viewing Tasks L e
5.1.2 Viewing Task Details o e

5.2 ServICEs e e e e
5.2.1 Viewing Services
5.2.2 Viewing Service Details
5.2.3 Viewing Service Logs L L e

5.3 Stacks ..o oL e
5.3.1 Viewing Stack
5.3.2 Deploying a Stack e e e
5.3.3 Updating a Stack e

5.4 Node Management i e e e e
5.4.1 Viewing Nodes L

5.5 Network Management e
5.5.1 Viewing Networks e

5.6 Volume Management e e

5.6.1 Viewing Volumes L. 13

5.6.2 Creating Volumes L 14

5.7 User Managemento 15
5.7.1 Viewing Users e e e e 15

5.7.2 Creating Users o i i it e e 16

5.7.3 Editing Users 17

5.8 Webhooks Management e e e e 17
5.8.1 Creating Webhooks L e 17

6 Updating Docks 18
7 Troubleshooting 18
7.1 Error: bind: address already in useo 18

1 System Overview

This document assumes knowledge of how Docker works. For more information read:

e About Docker Engine
e Docker Overview
e Swarm Mode Key Concepts

Docks provides a web interface for managing a Docker Swarm. Along with an easy to use interface Docks
provides security by only allowing registered users to manage Docker. Docks exposes the same functionality as
the Docker Command Line Interface.

Docks allows developers and system administrators to manage the deployment of applications without re-
quiring SSH access to a server.

2 System Configuration

Docks consists of two subsystems:
o Docks Web Interface
e Docks API Server

The web interface can be served from any static file server such as GitHub pages and will communicate with
the Docks APT server through the web browser.
The Docks API server is deployed on a Manager Node in the Docker Swarm

C

Docks Web Interface

'

=
-

Server running Docker and Docks
(Manager)

' ! '
@ & @
e - .

Server running Docker Server running Docker Server running Docker
(Warker) (Waorker) (Warker)

Figure 1: Docks Deployment Diagram

https://docs.docker.com/engine/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/swarm/key-concepts/

3 Installation

1. Install Docker 17.06.2-ce or higher

2. Install Docker Compose

3. Create a Swarm using sudo docker swarm init

4. Clone https://github.com/TripleParity/docks.git

5. Run sudo docker-compose pull to download the required images

6. Run sudo docker stack deploy -c docker-compose.yml docks to deploy Docks

7. Run sudo docker stack deploy -c docker-compose-nginx.yml demo to deploy a sample applica-
tion

8. Browse to http://127.0.0.1:4200 to view the Docks web interface

9. To remove Docks from the system run the following commands:

e sudo docker stack rm docks
e sudo docker stack rm demo

3.1 Configuration
3.1.1 Docks Web Interface

The following parameters can be configured in the docker-compose.yml file

e DOCKS_API_ADDRESS - The address of the Docks API server
e ports - The ports to listen on

3.1.2 Docks API

The following parameters can be configured in the docker-compose.yml file

JWT_SECRET - The secret key used during authentication requests
DOCKS_DB_ADDRESS - The address of the database

POSTGRES_PASSWORD - The password for the postgres database user
ports - The ports to listen on

4 Getting Started

The web interface will be available at http://127.0.0.1:4200 after following the Installation instructions. The
database will automatically be initialized and the default user will be created:

e Username: admin
e Password: admin

It is strongly recommended to change the password as soon as possible. This will be explained further in
User Management

https://docs.docker.com/install/
https://docs.docker.com/compose/install/
http://127.0.0.1:4200
http://127.0.0.1:4200

Login

Username

Username

Password

Password

Figure 2: Login Page

-LosouT (]
_

I g L2 ®
£ Stacks
® Services Networks Volumes Tasks Services
19 1 86 20
% Tasks
Nodes
3
8 volumes
Nodes Loads Nodes Status
I sherlock victor I atticus I Onine Offine

& Users

bt

3 webhooks

Figure 3: Home Screen

5 Using the System
5.1 Tasks

A service consists of Tasks. Tasks can only be viewed - they are managed by Docker as part of services.

5.1.1 Viewing Tasks

The table displays the following information:

e Name of the task

Image that the task is running

State of the task. Green means the task is running, red indicating it has stopped and blue indicating it is
preparing

Node ID on which the task is running

Search Tasks Q
% Tasks
W Services Name Image Node Status
& Stacks)) . -
docks.1 tripleparity/docks-api:latest@sha256:63fb1d4c wk3bb388a4sh8bbgSgn7j0eyt
Infras
docks-api.l postgres:latest@sha256:1d26fae6c056760ed5 wkabb388adshabbgSgn7joeyt
= Nodes
& Networks docks-api.1 postgres:latest@sha256:1d26faebc056760ed5 wk3bb388adsh8bbg5gn7j0eyt
docks.1 postgres:latest@sha256:1d26faebc056760eds wk3bb388adshabbgbgn7)0eyt
docks.1 postgres:latest@sha256:1d26fae6c056760ed5 wkabb388adshabbgSgn7joeyt
docks.1 tripleparity/docks-api:latest@sha256:63fb1d4c’ wk3bb388a4sh8bbg5gn7j0eyt
& Users
docks.1 tripleparity/docks-api:latest@sha256:63fb1d4c wk3bb388a4sh8bbgSgn7j0eyt
428 Webhooks docks.1 postgres:latest@sha256:1d26fae6c056760ed5 wkabb388adshabbgSgn7joeyt
docks-api.1 postgres:latest@sha256:1d26faebc056760ed5 wk3bb388adsh8bbg5gn7j0eyt

Figure 4: Task View

5.1.2 Viewing Task Detalils

From the task view, a task can be clicked to open up an new page on which details of that specific task is
displayed.

(£ Task: docks-api.1 Detail

% Tasks
W Services General
£ Stacks
ID:
Image:
Created At:

& Networks Last Modified At:

Service
Data

& Volumes Status

®u Status:
sers

Desired Status

48 Webhooks

589ghq459ygasz3zub89h72zw
postgres:latest
2018-09-2117:26
2018-09-2117:27

docks-api_db

[running]

[running]

Figure 5: Task Detail View

5.2 Services

A stack consists of services. The service list view provides a sortable and searchable table for deployed services.

5.2.1 Viewing Services

The table displays the following information:

e Name of the service

Image that the service is running
Mode of the service

Replicas of that services running
Port of which the service is listening

% Tasks

W Services

& Stacks
Infr

= Nodes

i Networks

i Webhooks

5.2.2 Viewing Service Detalils

Search Services

Name

docks-api_db

docks_api

docks_db

Image

postgres:latest

tripleparity/docks-api:latest

postgres:latest

CREATE SERVICE (&

Mode Replicas Ports
vip 1 -
vip 1 8080
vip 1 -

Figure 6: Service View

From the service view, a service can be clicked to open up an new page on which details of that specific service

are displayed.

() Service: docks_api

% Tasks
W Services General
& Stacks
ID: ny97aaipxvqtyg2714erlz02d
n Image: tripleparity/docks-api:latest
= Nodes Mode Replicated
= Networks Replicas: 1
Port 8080
Stack: docks
& Volumes
Created At 2018-09-1415:14
Last Modified At: 2018-09-2117:26
& Users
Tasks

i Webhooks

Figure 7: Service Detail View

5.2.3 Viewing Service Logs

From the service detail view, the logs page can be opened to view the complete log for that service.

Figure 8: Service Log View

5.3 Stacks

The concept of a Stack is the core feature of Docker. A Stack describes Services (applications) and how they
should be deployed.

5.3.1 Viewing Stack

The table displays the following information:

e Name of the stack
e Number of services that belongs to the stack

@ e
:

W Services Stack Name Services Count

Search Stacks

% Tasks

£ Stack
S docks 2

Infrastructure

docks-api
= Nodes
i Networks

Data

& Volumes

i Users

% Webhooks

Figure 9: List of Stacks in the Swarm

5.3.2 Deploying a Stack

Docks allows the user to deploy their own Stack (Application) by uploading a Stack file. Pre-configured stacks
can also be selected for deployment, such as Wordpress, Nginx, and MongoDB. The Stack File should be modified
to fit the needs of the administrator and the system.

The Stack should be given a unique name to identify it in the system.

10

LOGOUT &

Deploy Stack

& stacks
Servi
W Services Stack Name
W Tasks Insert Stack Name
1 Add the compose file here Select a docker-compose file:
Choose File | No file chosen
OR
& Volumes
T

& users

4 Webhooks

m e

Figure 10: Deploying a Stack

5.3.3 Updating a Stack

By uploading a modified Stack file Docker will automatically update the deployed Stack to match the Stack file.
Reasons for updating the stack may include:

e Updating to a new version

Adding a new application to the Stack

Changing the port for a running application

Attaching new volumes to applications for extra storage

Changing environmental variables used for configuration

LOGOUT &

Stack Name
& stacks
_ my_nginx_stack
W Services
1 jon: '3.3' .
@ Tasks 2+ sorvicen: Select a docker-compose file:
3- epp
M i ‘nginx:latest Choose File | No file chosen
6~ - published: 5009
7 target: 80
8 protocol: tcp
9 rode: ingress
10~ networks:
1 - default
12+ ceoloy:
13 mode: replicated
14 replicas: 1
15+ networks
& Volumes 16- default:
17 Griver: overlay

18

& users

m S

4 Webhooks

Figure 11: Updating a Stack

11

5.4 Node Management

Docker swarm is a concept that clusters single, separate docker hosts into a single virtual docker host. It consists
of manager nodes that delegate jobs and load balance between worker nodes.

5.4.1 Viewing Nodes

The table displays the following information:

Name of the nodes

Engine version of the node

IP Address of the node

Availability of the node Green means the nodes is active, red indicating it has stopped and blue indicating

it is preparing

Role of the node

e State of the node Green means the nodes is active, red indicating it has stopped and blue indicating it is
preparing

e Number of CPU’s assigned to the node

e Memory assigned to the node

@ oo

Applicz s Search Nodes Q
% Tasks
W Services Name Engine version IP address Availability Role State CPUs Memory

-
& Stacks
trashPanda 17.05.0-ce 192.168.101.247 active manager ready 4 3.76 GB

Infre

1 total

= Nodes

i Networks

Data

& Volumes

i Users

48 Webhooks

Figure 12: Nodes View

5.5 Network Management

Docker networks allow a user to connect containers with services or containers and services to non-Docker
workloads.

5.5.1 Viewing Networks
The table displays the following information:

e Name of the network

12

e Driver assigned to the network

Networks

% Tasks Name Driver

W Services

ingress overlay
& Stacks

docks_default overlay
= Nodes docks-api_default overlay
& Networks

bridge bridge

docker_gwbridge bridge
& Volumes

appichapsapi_default bridge
& Users appichaps-network-private bridge

host host
& Webhooks

none null

Figure 13: Networks View

5.6 Volume Management

Volumes are used with persistent data generated and used by Docker containers.

5.6.1 Viewing Volumes
The table displays the following information:

e Name of the volume
e Driver assigned to volume

13

Search Volumes Q CREATE NEW VOLUME)

W Services Name Driver

% Tasks

tacks

7279c3ac138b85072ce7801 12133a005453db981623bed7f1fhalfbeg3ederod local
docksapi_docks_data local
= Nodes
2. Networks fa25bb0f7794c92a84c5f37fe7700d0bd00d4d 57d3b2772983769daf3996d267 local
Data 247ad0364a13fb101a14bc9cch70372821b30be4507fcc3cf6ad 1daced57c805 local
& Volumes
45c03e2d1bbfd76997c678fb7f7613672295bd3b9f7ead013a1303f72f011a63 local
92fbd08c8006466e3e509c12d0d1f94941d441ba093eaa23ff3f044bb93b3512 local
& Users
d36adad35e7f7a467e131230952a9924344a06d944075b1a233ad93236119¢47 local
i Webhooks 031fc8761a0b543512a000e553260617509720724371f1555c28a80aea5(174 lacal
4525041a18b938740c8ad72daa30badf0c7f0936b69ead6145668f891222f40 local

Figure 14: Volumes View

5.6.2 Creating Volumes

Docks allows the user to create their own volumes. The Volums should be given a unique name and assigned
to a driver.

14

P Create Volume

% Tasks
W Services
£ Stacks + Name: Tardis
= Nodes
+ Driver: Custom

i Networks

B Volumes Add Driver Options &

Add a Label ©

i Users

CANCELD
48 Webhooks -

Figure 15: Deploying a Stack

5.7 User Management
5.7.1 Viewing Users

Only registered users can use Docks. An admin user can create more admin users. Currently there exists only
admin users, so be sure to trust the person that will be using the account.

15

Users

W Services

E Stacks List of users |FiITer username

Username Operations

= Nodes :
admin m ENABLE TWO-FACTOR ﬁ

i Networks

& Volumes

& Users

i Webhooks

Figure 16: Users

5.7.2 Creating Users

Users can be created.

LOGOUT &)

Create User

Username
% Tasks

. | Username
W Services

= Stacks Password

I Password

= Nodes Password

& Networks I Confirm password

& Volumes

48 Webhooks

Figure 17: Users

16

5.7.3 Editing Users

Passwords can be changed using the Change Password page (Users -> Edit)

@ Docks

Edit User

Username
% Tasks

admin
W Services

= Stacks Password

nf Icture |

= Nodes Confirm Password

&ta Networks I
- IO
& Volumes

4% Users

4% Webhooks

Figure 18: Users

5.8 Webhooks Management

Webhooks make it easy for our application to communicate flexibly with external services (such as slack). This
allows us to generate slack notifications

5.8.1 Creating Webhooks

This pages allows you create webhooks.

17

1. Create Webhooks:
& Stacks
I . Name: myWebhook
W Tasks)

Infrastructure «URL: ephook R

= Nodes

& Networks

Select Triggers:

Data

O Volumes [Network [Service [J Node [Image U Daemon [Secret [Config
& Volumes

Users 1 (dson) = { return son;)l

& users

oks

& Webhooks

=3
Figure 19: Webhooks Creation

6 Updating Docks

Once Docks is deployed, it can be updated as described in Updating a Stack
Alternatively the respective Stack file can be modified locally as deployed using
sudo docker stack deploy -c docker-compose.yml docks

7 Troubleshooting

7.1 Error: bind: address already in use

Another service is most likely running on port 4200 , 8080 or 8081 . The ports for Docks and nginx-demo
can be specified in the docker-compose.yml and docker-compose-ymi files.
For example to run on port 9000 instead of 4200 make the following changes:

ports:
- 4200:80

to

ports:
- 9000:80

18

	System Overview
	System Configuration
	Installation
	Configuration
	Docks Web Interface
	Docks API

	Getting Started
	Using the System
	Tasks
	Viewing Tasks
	Viewing Task Details

	Services
	Viewing Services
	Viewing Service Details
	Viewing Service Logs

	Stacks
	Viewing Stack
	Deploying a Stack
	Updating a Stack

	Node Management
	Viewing Nodes

	Network Management
	Viewing Networks

	Volume Management
	Viewing Volumes
	Creating Volumes

	User Management
	Viewing Users
	Creating Users
	Editing Users

	Webhooks Management
	Creating Webhooks

	Updating Docks
	Troubleshooting
	Error: bind: address already in use

