\Z ’
0OCKS

Testing Policy for Docks

Team: TripleParity
Client: Compiax

Team Members
Francois Mentz
Connor Armand du Plooy
Raymond De Vos
Evert Geldenhuys
Anna-Marié Helberg

Paul Wood
Contents
1 Testing Process
1.1 Peer Review e e e e e
1.2 Automated Testing and Continuous Integration
1.2.1 Travis CI e
1.2.2 Docker Cloud e
1.3 Docks UL s
1.3.1 tslint . . . o o e e e e e e
1.3.2 karma e e e e e e e e e e
1.3.3 Protractor e
1.4 Docks APL.
1.4.1 Eslint e
1.4.2 Jasmine L e e e e e e e e
1.4.3 Jest . . . e e e e e
1.4.4 CodeClimate 0 i i e e e e e e e e e e

1 Testing Process

1.1 Peer Review

Before code can be merged into the develop branch a Pull Request has to be created. Three reviews are required
from other developers before the pull request can be merged into develop.
During peer reviews the following should be checked:

e Architectural problems - will this cause problems in the future?
e Compliance with requirements and design - is that what we need?

e Coding Standards - proper code formatting and security standards?

Reviewers

ﬁ FdMeniz

annamarieHelberg W

{2} devosray
ﬁ! egeldenhuys

At least 3 approving reviews are
required to merge this pull request.

Figure 1: At least 3 peer reviews are needed for a feature to be merged

Ei ° FJMentz approved these changes on behalf of TripleParity/developers
10 hours ago

Figure 2: An example of a positive peer review

1.2 Automated Testing and Continuous Integration
When a commit is made to the ’docks-ui’ or ’docks-api’ repositories on GitHub two processes are started:
e Travis CI Builds the repository (https://travis-ci.org/TripleParity)
e Docker Cloud builds the repository and creates a Docker Image that can be deployed in production

(https://hub.docker.com/u/tripleparity/)

1.2.1 Travis CI
The history of test reports for Travis CI can be viewed at https://travis-ci.org/TripleParity/docks-ui/
branches. If the build was not successful it will be marked as ’failed’

Travis CI is used for running tests associated with each repository.

For the frontend Angular generates a set of tests for each component to verify that the component was success-
fully created. These tests run inside a headless (no screen required) Chrome browser.
The backend (docks-api) also has a suite of unit tests that are executed on Travis CI.

https://travis-ci.org/TripleParity
https://hub.docker.com/u/tripleparity/
https://travis-ci.org/TripleParity/docks-ui/branches
https://travis-ci.org/TripleParity/docks-ui/branches

Default Branch

~/ master H 48 passed ffro3e7
v
1 build 27 days ago ® Evert Geldenhuys
Active Branches
10affal Y, %
3 builds - @ CDuPlooy
X loginPage +H 262 failed 95d81d1
, X X
2 builds 19 minutes ago @ Paul Wood
~/ develop #H 261 passed 8119%ead
v vV VY
19 builds 29 minutes ago @ GitHub

Figure 3: Screenshot of Travis CI branch build history

The command "ng build --prod --no-progress" exited with 0.
g t --no-pr

rimentalWarning: The fs.promi i imental
- started at http:

h unlimitec

command "ng test --no-progress" exited with 0.

Figure 4: 18 UI tests running on Travis

1.2.2 Docker Cloud

Docker images are build on Docker Cloud. These image can then be deployed in a production environment or
for development and testing. Images can be viewed at https://hub.docker.com/u/tripleparity/

https://cloud.docker.com/
https://hub.docker.com/u/tripleparity/

© 12 minutes ago Build in "loginPage’ (95d81d14) v

© 23 minutes ago Build in 'develop' (8119ea9d) e
J 28 minutes ago Build in 'volumeHtml' (a16d336b) e
© 37 minutes ago Build in 'service-operations-#41' (4a388ff5) v
n hour ° Build in 'service-operations-#41' (5ab5d577) e

n hour ° Build in 'volumeHtml' (38dd396b) v

n hour ° Build in 'networks2' (d06c71ae) e

n hour ° Build in 'service-operations-#41' (d3b56073) v

n hour ° Build in 'networks2' (20c6f673) v

n hour ° Build in 'service-operations-#41' (911d1723) e

Figure 5: Screenshot of Docker Cloud Build History

1.3 Docks Ul

The tests for the frontend could briefly be described as a series of steps. These tests are run on every commit,
and on each pull request. Usually each team member will run the tests before comitting to ensure that the build
does not break.

1. Run linter to check for type errors/typos in code structure.
2. Create a production build of the web application and ensure there are no errors.
3. Run the internal test cases.

The test configuration can be viewed at https://github.com/TripleParity/docks-ui/blob/master/
karma.conf.js. The tests are inside a variety of files, in particular any file with a keyword "spec" inside
https://github.com/TripleParity/docks-ui/tree/master/src/app. The test history is on Travis CI
(https://travis-ci.org/TripleParity/docks-ui.

1.3.1 tslint

Inside of the UI we additionally use tslint, protractor and karma for testing.
Tslint is a static analysis tool to check typescript code for readability, maintainability and functionality errors.
It can be customised with custom linting rules and formatters. This can help catch type errors in the code.

fetchVolumes() {
this.volumeService.getVolumes().subscribe(
(volumes: Volume[]) => {
this.volumes = [1, 2, 3];
this.searchString = [...volumes];
this.islLoaded = true;
*
(err: VolumeError) => {
this.toastr.error(err.message, 'An error occured');
b
):

Figure 6: Screenshot of tslint linting

In the above example an array of numbers is mistakenly assigned to an array of Volumes. The linter clearly
highlights this as a problem.

https://github.com/TripleParity/docks-ui/blob/master/karma.conf.js
https://github.com/TripleParity/docks-ui/blob/master/karma.conf.js
https://github.com/TripleParity/docks-ui/tree/master/src/app
https://travis-ci.org/TripleParity/docks-ui

1.3.2 karma

Karma is a tool which creates easy testing environments for developers; It’s main goal is to give developers
instant feedback about their test cases.

module.exports = function (config) {
config.set({

basePath: ',

frameworks: ['jasmine®, '@angular/cli'],

plugins: [
require('karma-jasmine'),
require('karma-chrome-launcher'),
require('karma-jasmine-html-reporter'),
require('karma-coverage-istanbul-reporter'),
require('@angular/cli/plugins/karma’)

1.

client: {
clearContext: false

I

coverageIstanbulReporter: {
reports: ['html', ‘lcovonly'],
TixWebpackSourcePaths: true

I

angularCli: {
environment: 'dev’

I

reporters: ['progress', 'kjhtml®'],

port: 9876,

colors: true,

loglevel: config.LOG_INFO,

autoWatch: true,

browsers: ['ChromeHeadless'],

customLaunchers: {

ChromeHeadlessNoSandbox: {
base: 'ChromeHeadless',
flags: ['--headless', '--disable-gpu','--disable-translate’, '--disable-extensions', '--remote-debugging-port=9223', '--no-sandbox']
iy
I
singleRun: true
1)
}

Figure 7: Screenshot of karma config

In particular we run a headless instance of chrome with all extensions disabled to test our code; Istanbul is
also used to generate a code coverage report. The test cases are run only once but can be configured such that
the tests are run every time a file is changed.

When a commit is made to a branch, these tests are also run.

1.3.3 Protractor

Protractor is an end-to-end test framework. Tests are run in a browser which automatically interacts with the
page as a user would. We decided to use protractor because it was specifically created with Angular (our front
end framework) in mind.

1.4 Docks API

The tests for the API run in the same way and at the same time, as the front end; Which is to say on every
commit and pull request. They can also be run manually. First unit tests are performed with jasmin, and then
integration tests are done with jest.

The tests are defined in https://github.com/TripleParity/docks-api/tree/master/spec. The jas-
mine tests are defined in https://github.com/TripleParity/docks-api/blob/master/__tests__/api/api_
spec. js. The test history is on Travis CI (https://travis-ci.org/TripleParity/docks-api.

1.4.1 Eslint

Eslint is essentially the same as tslint but for javascript.

https://github.com/TripleParity/docks-api/tree/master/spec
https://github.com/TripleParity/docks-api/blob/master/__tests__/api/api_spec.js
https://github.com/TripleParity/docks-api/blob/master/__tests__/api/api_spec.js
https://travis-ci.org/TripleParity/docks-api

1.4.2 Jasmine

A behaviour driven testing framework. We use it because it does not require any other JavaScript and is easy
to write.

describe(, function() {
it(, Tunction() {
frisby.get(host +) .expect(, 401);

, function() {
frishy

.post(tokenURL, credentials)
.expect(, 200)
.expect(0)
.expect(. , Joi.string().required())
.then(function(res) {

let jwt = res.json| 1| 2

frishy
.Tetch(host +
method: ,
headers: {
Authorization:

s
})
.expect(, 200)
.expect(,

Figure 8: Screenshot of jest test

1.4.3 Jest

Jest is a javascript testing framework. It has some nice features such as instant feedback meaning failed tests
run first. This means we can easily tend to issues.
Jest is used in the backend to run tests on the API itself.

1.4.4 CodeClimate

An automated code review tool.
Tests can be viewed at https://codeclimate.com/github/TripleParity/docks-api

A\ CODE CLIMATE Product ~ Pricing Developers m Login

TripleParity/docks-api © 2 Star

QOverview Progress Issues Code Trends Last & master puild 6 hrs ago < Refresh
Breakdown Codebase summary
58 MAINTAINABILITY TEST COVERAGE

3 days 85%

MAINTAINABILITY
Repository stats

L
TEST COVERAGE

CODE SMELLS DUPLICATION OTHER ISSUES

6 19 0]

AN CODE CLIMATE PRODUCT SUPPORT COMPANY SOCIAL
2018 Code Climate, Inc Features Help and support About Blog
Pricing Documentation Careers Facebook
Status Legal Twitter
Security

Figure 9: Screenshot of CodeClimate score

https://codeclimate.com/github/TripleParity/docks-api

	Testing Process
	Peer Review
	Automated Testing and Continuous Integration
	Travis CI
	Docker Cloud

	Docks UI
	tslint
	karma
	Protractor

	Docks API
	Eslint
	Jasmine
	Jest
	CodeClimate

