
Testing Policy for Docks

Team: TripleParity

Client: Compiax

Team Members

Francois Mentz

Connor Armand du Plooy

Raymond De Vos

Evert Geldenhuys

Anna-Marié Helberg

Paul Wood

Contents

1 Testing Process 2

1.1 Peer Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Automated Testing and Continuous Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Travis CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Docker Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Docks UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 tslint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 karma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Protractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Docks API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Eslint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Jasmine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Jest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.4 CodeClimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1



1 Testing Process

1.1 Peer Review

Before code can be merged into the develop branch a Pull Request has to be created. Three reviews are required
from other developers before the pull request can be merged into develop.

During peer reviews the following should be checked:

• Architectural problems - will this cause problems in the future?

• Compliance with requirements and design - is that what we need?

• Coding Standards - proper code formatting and security standards?

Figure 1: At least 3 peer reviews are needed for a feature to be merged

Figure 2: An example of a positive peer review

1.2 Automated Testing and Continuous Integration

When a commit is made to the 'docks-ui' or 'docks-api' repositories on GitHub two processes are started:

• Travis CI Builds the repository (https://travis-ci.org/TripleParity)

• Docker Cloud builds the repository and creates a Docker Image that can be deployed in production
(https://hub.docker.com/u/tripleparity/)

1.2.1 Travis CI

The history of test reports for Travis CI can be viewed at https://travis-ci.org/TripleParity/docks-ui/
branches. If the build was not successful it will be marked as 'failed'

Travis CI is used for running tests associated with each repository.

For the frontend Angular generates a set of tests for each component to verify that the component was success-
fully created. These tests run inside a headless (no screen required) Chrome browser.

The backend (docks-api) also has a suite of unit tests that are executed on Travis CI.

2

https://travis-ci.org/TripleParity
https://hub.docker.com/u/tripleparity/
https://travis-ci.org/TripleParity/docks-ui/branches
https://travis-ci.org/TripleParity/docks-ui/branches


Figure 3: Screenshot of Travis CI branch build history

Figure 4: 18 UI tests running on Travis

1.2.2 Docker Cloud

Docker images are build on Docker Cloud. These image can then be deployed in a production environment or
for development and testing. Images can be viewed at https://hub.docker.com/u/tripleparity/

3

https://cloud.docker.com/
https://hub.docker.com/u/tripleparity/


Figure 5: Screenshot of Docker Cloud Build History

1.3 Docks UI

The tests for the frontend could brie�y be described as a series of steps. These tests are run on every commit,
and on each pull request. Usually each team member will run the tests before comitting to ensure that the build
does not break.

1. Run linter to check for type errors/typos in code structure.

2. Create a production build of the web application and ensure there are no errors.

3. Run the internal test cases.

The test con�guration can be viewed at https://github.com/TripleParity/docks-ui/blob/master/
karma.conf.js. The tests are inside a variety of �les, in particular any �le with a keyword "spec" inside
https://github.com/TripleParity/docks-ui/tree/master/src/app. The test history is on Travis CI
(https://travis-ci.org/TripleParity/docks-ui.

1.3.1 tslint

Inside of the UI we additionally use tslint, protractor and karma for testing.
Tslint is a static analysis tool to check typescript code for readability, maintainability and functionality errors.
It can be customised with custom linting rules and formatters. This can help catch type errors in the code.

Figure 6: Screenshot of tslint linting

In the above example an array of numbers is mistakenly assigned to an array of Volumes. The linter clearly
highlights this as a problem.

4

https://github.com/TripleParity/docks-ui/blob/master/karma.conf.js
https://github.com/TripleParity/docks-ui/blob/master/karma.conf.js
https://github.com/TripleParity/docks-ui/tree/master/src/app
https://travis-ci.org/TripleParity/docks-ui


1.3.2 karma

Karma is a tool which creates easy testing environments for developers; It's main goal is to give developers
instant feedback about their test cases.

Figure 7: Screenshot of karma con�g

In particular we run a headless instance of chrome with all extensions disabled to test our code; Istanbul is
also used to generate a code coverage report. The test cases are run only once but can be con�gured such that
the tests are run every time a �le is changed.
When a commit is made to a branch, these tests are also run.

1.3.3 Protractor

Protractor is an end-to-end test framework. Tests are run in a browser which automatically interacts with the
page as a user would. We decided to use protractor because it was speci�cally created with Angular ( our front
end framework ) in mind.

1.4 Docks API

The tests for the API run in the same way and at the same time, as the front end; Which is to say on every
commit and pull request. They can also be run manually. First unit tests are performed with jasmin, and then
integration tests are done with jest.

The tests are de�ned in https://github.com/TripleParity/docks-api/tree/master/spec. The jas-
mine tests are de�ned in https://github.com/TripleParity/docks-api/blob/master/__tests__/api/api_

spec.js. The test history is on Travis CI (https://travis-ci.org/TripleParity/docks-api.

1.4.1 Eslint

Eslint is essentially the same as tslint but for javascript.

5

https://github.com/TripleParity/docks-api/tree/master/spec
https://github.com/TripleParity/docks-api/blob/master/__tests__/api/api_spec.js
https://github.com/TripleParity/docks-api/blob/master/__tests__/api/api_spec.js
https://travis-ci.org/TripleParity/docks-api


1.4.2 Jasmine

A behaviour driven testing framework. We use it because it does not require any other JavaScript and is easy
to write.

Figure 8: Screenshot of jest test

1.4.3 Jest

Jest is a javascript testing framework. It has some nice features such as instant feedback meaning failed tests
run �rst. This means we can easily tend to issues.

Jest is used in the backend to run tests on the API itself.

6



1.4.4 CodeClimate

An automated code review tool.
Tests can be viewed at https://codeclimate.com/github/TripleParity/docks-api

Figure 9: Screenshot of CodeClimate score

7

https://codeclimate.com/github/TripleParity/docks-api

	Testing Process
	Peer Review
	Automated Testing and Continuous Integration
	Travis CI
	Docker Cloud

	Docks UI
	tslint
	karma
	Protractor

	Docks API
	Eslint
	Jasmine
	Jest
	CodeClimate



