
Requirements and Design for Docks

Team: TripleParity

Client: Compiax

Team Members

Francois Mentz

Connor Armand du Plooy

Raymond De Vos

Evert Geldenhuys

Anna-Marié Helberg

Paul Wood

Contents

1 System Overview 3

1.1 Purpose . 3
1.2 Product Scope . 3
1.3 De�nitions, acronyms and abbreviations . 3
1.4 UML Domain Model . 4

2 Functional Requirements 4

2.1 Users . 4
2.2 Subsystems . 5

2.2.1 Authentication . 5
2.2.2 WebHooks and Docker Events . 5
2.2.3 Stack API Extension for Docker . 6
2.2.4 API Proxy for Docker . 9
2.2.5 Frontend Docks API service . 9
2.2.6 Docker Management Functions . 9

2.3 Speci�c Requirements . 9
2.3.1 WebHooks and Docker Events . 9
2.3.2 Authentication . 10
2.3.3 Stack API Extension for Docker . 12
2.3.4 API proxy for Docker . 14
2.3.5 Docker Management Functions . 14
2.3.6 Frontend Docks API service . 14

3 Non-functional Requirements 14

3.1 Quality . 14
3.2 Safety . 15
3.3 Security . 15

1

4 System 15

4.1 Interfaces . 15
4.1.1 Software Interfaces . 15

4.2 System Con�guration . 15
4.3 Architectural Styles . 16

4.3.1 Docker Engine . 17
4.3.2 Docks-API . 18
4.3.3 Docks-UI . 19

2

1 System Overview

1.1 Purpose

Docker is a tool designed to make it easier to create, deploy and run applications using lightweight virtualization.
It provides a command line interface (CLI) and RESTful API. Maintaining and deploying applications often
involve multiple people. Providing multiple people access to the Docker CLI requires Secure Shell access (SSH)
as root to the server running Docker . If the server is secure it will only provide SSH access using public/private
keys, which reduces convenience and restricts access to devices that are SSH capable and holds a private key.
The Docker API lacks functions which are provided by the CLI, so it cannot be used on its own.

The purpose of Docks is to provide a secure web user interface for using Docker .

1.2 Product Scope

Docks will provide functionality in three areas

1. Provide a secure web user interface that enables using the essential functions exposed by the Docker API
and CLI.

2. Provide a secure API to allow third party services to integrate with Docks and use Docker

3. Send real time noti�cations to system administrators via Slack about important events

1.3 De�nitions, acronyms and abbreviations

Docks A system to provide a web user interface and API for using Docker
and managing a Docker swarm

Docker Tool designed to make it easier to create, deploy and run applica-
tions using lightweight virtualization

Image �A container is launched by running an image. An image is an
executable package that includes everything needed to run an
application�the code, a runtime, libraries, environment variables,
and con�guration �les.�

Container �A container is a runtime instance of an image�what the image
becomes in memory when executed (that is, an image with state,
or a user process)�

Swarm A tool to schedule and clump docker nodes into a single virtual
machine which is easier to use and maintain.

Stack A group of Docker services that make up an application.
Service A collection of Docker containers of the same images.
Nodes Any virtual or physical machines that run Docker and are part of

a swarm.

3

1.4 UML Domain Model

Figure 1: UML Domain Diagram for the Docks System

2 Functional Requirements

2.1 Users

Docks will appeal mainly to software developers and system administrators with fundamental understanding of
Docker . Docks will allow them to deploy new applications with Docker as well as manage existing applications.
With the web user interface they will be able to update and troubleshoot applications using any web browser.
They will also be able to give access to the web user interface to other administrators for assisting in management.
It is assumed this category of users will have knowledge on con�guring applications to be deployed with Docker
and the ability to troubleshoot networks and applications.

Docks will also appeal to users that are interested in learning how to use Docker . With Docks they can
deploy pre-con�gured applications and develop an understanding of the features provided by Docker using the
web user interface. It is assumed these users know the basic Docker terminology and can learn from the Docker
documentation.

4

2.2 Subsystems

Figure 2: Component Diagram for Docks

Docks consists of two projects with distinct purposes: Docks UI which is the web user interface running in the
web browser and Docks API which is the server running on a Manager Node.

Docks UI is responsible for displaying information about applications running in Docker , and to provide a
convenient interface for sending information to Docker via the Docks API.

Docks API is responsible for providing authenticated access to the Docker API. It also extends the Docker
API by providing the ability to deploy Stacks and monitor Docker events for sending noti�cations.

Across these two projects exist a number of subsystems. Their speci�c requirements will be enumerator

2.2.1 Authentication

The authentication subsystem is responsible for authenticating and authorizing users as well as managing (create,
edit, delete) user accounts.

Figure 3: Use case diagram for Login

2.2.2 WebHooks and Docker Events

This subsystem is responsible for managing (create, edit, delete) WebHooks. It interfaces with the Docker API
to listen for events and send relevant data to the stored WebHooks.

5

Figure 4: Use case diagram for WebHooks

2.2.3 Stack API Extension for Docker

The Stack API Extension for Docker is part of the Docks API. Since Docker lacks an API for managing Stacks,
it has to be implemented by the Docks API. This will enable Docks UI and third party services to view and
manage Docker stacks.

Figure 5: Use case diagram for Stacks

6

Figure 6: Use case diagram for Nodes

Figure 7: Use case diagram for Volumes

7

Figure 8: Use case diagram for Services

Figure 9: Use case diagram for Users

8

Figure 10: Use case diagram for Networks

2.2.4 API Proxy for Docker

The API proxy for Docker is part of the Docks API. It provides authenticated access to the Docker API through
the Docks API. The Docker API is not exposed directly to the world, rather authenticated users may send
requests to the Docks API to be transparently forwarded to the private Docker API.

2.2.5 Frontend Docks API service

The Docks API service is part of the frontend (Docks UI). It acts as the interface between the graphical frontend
components and the Docks HTTP API. This layer of abstraction means that the network logic is hidden from
components that need to interact with the Docks API.

2.2.6 Docker Management Functions

Docker will be managed from the Docks UI, through the authenticated Docks API. The user should be able to
perform common operations from Docks UI such as deploying an application and viewing its state.

2.3 Speci�c Requirements

2.3.1 WebHooks and Docker Events

R1.1. The system shall allow a user to add new outgoing WebHooks

R1.2. The system shall display a list of added WebHooks

R1.3. The system shall allow a user to remove a WebHook

R1.4. The system shall allow a user to specify the type of events to send to the WebHook

R1.5. The system shall monitor all Docker events and send the relevant event data to the respective WebHook

R1.6. The system shall send a Slack noti�cation to WebHooks that should receive node events

9

2.3.2 Authentication

R2.1. The system shall allow an authorized user to interact with the Docks API

R2.2. The system shall provide the ability to use two factor authentication as described in RFC 6238

R2.3. The system shall provide a global administrative account role without restrictions

R2.4. The system shall provide the following user management features to be used by administrative accounts

R2.4.1. Create new administrative user

R2.4.2. Remove user

R2.4.3. Update user password

R2.4.4. Enable and disable two factor authentication

10

Figure 11: State diagram for user authentication
11

2.3.3 Stack API Extension for Docker

R3.1. The system shall provide the ability to deploy new stacks given the stack name and docker-compose �le

R3.2. The system shall provide the ability to return deployed stacks along with the number of services in each
stack

R3.3. The system shall provide the ability to update a stack

R3.4. The system shall provide the ability to remove a stack

R3.5. The system shall not allow a stack to be created if it already exists

R3.6. The system shall not allow a stack to be updated if it does not exist

R3.7. The system shall provide the ability to return the services that are part of a given stack

12

Figure 12: Activity diagram for deploying stacks using Docks
13

2.3.4 API proxy for Docker

R4.1 The system shall only forward requests to the Docker API if the request was made by an authenticated
user

R4.2 The system shall not modify content forwarded from the Docker API to the user

R4.3 The system shall not modify requests forwarded from the user to the Docker API

R4.4 The system shall forward error messages from the Docker API to the user

2.3.5 Docker Management Functions

R5.1. The system shall display all nodes

R5.2. The system shall display all stacks

R5.3. The system shall display all services

R5.4. The system shall display all tasks

R5.5. The system shall display all networks

R5.6. The system shall display all volumes

R5.7. The system shall allow a user to upload a docker-compose �le to deploy a Stack

R5.8. The system shall allow a user to remove a stack from the swarm

R5.9. The system shall display the tasks that are running in a service

R5.10. The system shall allow a user to view the log of a service

R5.11. The system shall allow a user to update a stack using a docker-compose �le

R5.12. The system shall allow a user to delete a volume

R5.13. The system shall allow a user to delete a network

2.3.6 Frontend Docks API service

R6.1. The system shall provide the interface for all requirements stated in the "Docker Management Functions"
section above

R6.2. The system shall provide meaningful error message to the user

3 Non-functional Requirements

3.1 Quality

Quality requirements entail the reliability and availability of the system. Both are important for our system
because Docks allows a company to manage their whole Docker Swarm. In other words, the system must be
available so that one can manage the Swarm (and reliabilty for the same reason).

This will be achieved by having Docks runcompletely o�ine. Docker also allows you to specify what happens
when a service goes down within its respective compose �le, for example, to restart the service or kill the service
completely.Docks run as a service that is set up to restart on failure which means that Docks will be available
most of the time.

To test whether the requirements are met, one can test the uptime but as we run Docks via Docker the
reliabilty and availablity are taken of by Docker itself.

14

3.2 Safety

Safety involves the ability to prevent the system from entering an unwanted state because of an unintended
operation. This is important because because if the system enters an unwanted state it can a�ect the availability
or reliability of the system.

Docks implement path guards to protect the system when a wrong path is entered. It will simply return a
404 error. Docks also implement a con�rmation system for all of the actions that can be performed to ensure
that accidental deletions or updates are not made to critical services. For example, user input is validated for
stacks to prevent them from overriding existing data.

The metric to test the paths can be using Fuzzing. This technique generates di�erent urls within Docks'
scope and outputs data such as whether incorrect urls were accepted or correct urls were rejected. The metric
for testing whether input is correct would be to apply user testing.

3.3 Security

Security entails protecting the system resources. This is done by authenitcation and di�erent types of users.
Authentication is achieved by two-factor authenication (which involves scanning a QR Code with your

phone) and by using a token-based approach. Not all users have the same privileges in the system and the type
is assigned once a user registers and can be updated by the administrator.

Docks applies npm-audit which performs a security review of the system and tell you about the vulnerabilities
within your dependencies and how to �x them. User testing can also be performed to verify authentication.

4 System

4.1 Interfaces

4.1.1 Software Interfaces

Since the frontend cannot securely interface with the Docker API, an intermediate interface will be developed
(Docks API). The Docks API will communicate between the frontend (Docks-UI) and the Docker API. The
Docks API will provide a simpli�ed interface for interacting with the Docker API.

4.2 System Con�guration

The Deployment diagram shows the architecture from the device perspective.

15

Figure 13: UML Deployment Diagram for the Docks System

4.3 Architectural Styles

The User Interface uses the Model View Controller architecture. Nodes and Containers have a data model. The
user interacts with the view to manipulate the data model. The view is updated when the data model retrieves
data using an N-Tier architecture. The 3-Tier architecture can be seen by the actor interacting with the view,
the request is then delegated to the models, which in turn communicate with other objects to retrieve and set
the required data from the Docker API server and Docker Swarm.

16

Figure 14: MVC and 3-Tier Architecture diagram for the Docks system

4.3.1 Docker Engine

Docker Engine uses a REST API; It could thus be described as a client-server architecture.

17

Figure 15: Docker Engine Architecture

4.3.2 Docks-API

The api is also a client-server based architecture although some functionality such as webhooks and slack
integration are event based.

Figure 16: Angular MVC

18

4.3.3 Docks-UI

Figure 17: Angular MVC

The frontend borrows concepts from Angular 5. It is mostly MVC based.
Components are created which represent the views; Controllers are essentially services and models are used

in conjunction with services and components.

19

	System Overview
	Purpose
	Product Scope
	Definitions, acronyms and abbreviations
	UML Domain Model

	Functional Requirements
	Users
	Subsystems
	Authentication
	WebHooks and Docker Events
	Stack API Extension for Docker
	API Proxy for Docker
	Frontend Docks API service
	Docker Management Functions

	Specific Requirements
	WebHooks and Docker Events
	Authentication
	Stack API Extension for Docker
	API proxy for Docker
	Docker Management Functions
	Frontend Docks API service

	Non-functional Requirements
	Quality
	Safety
	Security

	System
	Interfaces
	Software Interfaces

	System Configuration
	Architectural Styles
	Docker Engine
	Docks-API
	Docks-UI

